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Scanning tunneling spectroscopy applied to the high-Tc cuprates has revealed significant spatial inhomoge-
neity on the nanoscale. Regions on the order of a coherence length in size show variations of the magnitude of
the superconducting gap of order �20% or more. An important unresolved question is whether or not these
variations are also present in the bulk, and how they influence superconducting properties. As many theories
and data analyses for high-Tc superconductivity assume spatial homogeneity of the gap magnitude, this is a
pressing question. We consider the far-infrared optical conductivity and evaluate, within an effective-medium
approximation, what signatures of spatial variations in gap magnitude are present in various optical quantities.
In addition to the case of d-wave superconductivity, relevant to the high-Tc cuprates, we have also considered
s-wave gap symmetry in order to provide expected signatures of inhomogeneities for superconductors in
general. While signatures of gap inhomogeneities can be strongly manifested in s-wave superconductors, we
find that the far-infrared optical conductivity in d-wave is robust against such inhomogeneity, such that any
changes maintain the character of a curve for a single d-wave gap.
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I. INTRODUCTION

There is considerable evidence from scanning tunneling
microscopy �STM� that some cuprates are intrinsically inho-
mogeneous on the nanoscale. While Bi2Sr2CaCu2O8+�
�BSCCO� has been extensively studied,1–8 spatial inhomoge-
neities exist as well in La2−xSrxCuO4 �Ref. 9� and in electron
doped systems such as Pr0.88LaCe0.12CuO4.10 On the other
hand, the inhomogeneities seen in STM can be affected
through sample preparation methods.11 A critical question is
whether these inhomogeneities exist only on the surface
layer to which STM is sensitive, or are also present in the
bulk. Evidence that they are not present in the bulk is pro-
vided by NMR data on YBa2Cu3O7−� �YBCO�.12 Also, Lo-
ram et al.13 have argued that, even in BSCCO, bulk inhomo-
geneities on the scale indicated in STM experiments are
inconsistent with specific-heat data; although this view has
been challenged recently by Andersen et al.14 who concluded
that nanoscale inhomogeneity in BSCCO is a bulk property.
In view of this conflict, it is clearly important to look for
other possible probes of bulk nanoscale variation. Such a
probe is infrared absorption. In this paper, we consider the
effect of nanoscale regions on optical properties with an aim
at identifying their signatures in these quantities.

To understand how nanoscale variations of the supercon-
ducting energy gap can affect optical properties, we have
applied an effective-medium approximation �EMA� to an in-
homogeneous system with a distribution of superconducting
energy gaps. The merit of this approach is that we do not
commit ourselves to any particular microscopic model of the
inhomogeneity, but rather examine the macroscopic electro-
dynamics with a minimum of assumptions. In order to con-
sider the case of the high-Tc superconductors, we include
d-wave gap symmetry in our calculations and model the gap

distribution based on BSCCO STM gap maps of Refs. 2 and
6. As can be seen in these and other references, using STM to
image a surface allows for mapping of high and low regions
of superconducting gap magnitude, �.

The lattice structure of the BSCCO compounds is such
that the surface can cleave smoothly between adjacent Bi-O
planes, resulting in what should be a uniform surface struc-
ture. However, despite the supposed uniform lattice
structure—that is to say there is no evidence of restructuring
on the surface after cleaving—there is a spatially inhomoge-
neous energy gap structure at the surface. These inhomoge-
neous gap structures are commonly displayed in the form of
a gap map, as seen in Fig. 1�a�. In this figure, the blue
patches are regions with a gap magnitude of about 50 meV
and the red have gap values of about 20 meV. The largest
number of regions occurs with a gap of �32 meV and the
variation away from this value is about �20% as indicated in
Fig. 1�c�. The diameters of these regions are typically of
order 3 nm,7 but there is no particular pattern or underlying
structure, rather the regions appear to be randomly distrib-
uted.

It is also important to note the discontinuous nature of
these gap maps, as can be seen in Fig. 2, where a scan along
a line across the surface is shown. Here we see that the gap
map contains distinct regions with nearly uniform gap values
and consequently does not represent a smoothly varying
single-gap function ��x�, but rather suggests separate
patches, each with its own gap value.

In implementing the EMA as a phenomenological model,
we are assuming that these STM images directly reflect the
bulk gap distribution in an attempt to find signatures of this
gap inhomogeneity. However, in the following, our results
for far-infrared optical conductivity will show that no strong
signatures were observed in mixtures of d-wave supercon-
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ductors and indeed the results of the EMA can be very well
approximated by a single spatially averaged gap value,
which provides support for the past and continuing use of
theories and data analyses which assume a spatially homo-
geneous energy gap in the bulk of high-Tc superconductors.
It would appear from our work that even if the inhomogene-
ities are present in the bulk, this assumption will be robust.

On the other hand, we find that signatures in mixtures of
s-wave superconductors present themselves in the form of a
distribution of gap onsets over the range of gaps. This distri-
bution results in an optical conductivity and optical self-
energy which are distinct from a single-gap system, and that
are highly dependent upon the range of variation in the gap
as well as the actual distribution present.

In Sec. II, we begin by presenting the theory for the EMA
and its use to obtain the optical conductivity. In Sec. III, we
will present our results for d-wave superconductivity based
on the distribution of gaps seen in STM. Section IV will then
present results for s-wave superconductivity, and we summa-
rize our conclusions in Sec. V.

II. EFFECTIVE-MEDIUM THEORY

It is of interest to us to understand in which systems and
on what energy scales we might expect to see indications of
inhomogeneities in bulk optical properties in order to make
generalizations on, or identify, inhomogeneities in new ma-
terials. For this reason, we seek a purely phenomenological
method of examining these effects, and here we will turn to
Bruggeman’s EMA.15,16 This EMA has been rigorously
tested and previously applied to both microscopic metallic
and microscopic superconducting-normal mixtures.17–21 It
has also been used more recently to model22,23 the very low
frequency optical response in the cuprates and to discuss, in
particular, the THz data on BSCCO from Corson et al.24,25 In
certain circumstances, an alternative choice of EMA might
be used, the Maxwell-Garnet EMA,16 however, that EMA
applies when there are a dilute set of regions embedded in a
large uniform background, which is not the case seen here in
the STM of Fig. 1�a�. In the following, we wish to make a
semiclassical approximation, treating the system classically
as having randomly distributed regions, each a uniform su-
perconducting material, with properties defined by nonclas-
sical BCS results. The implicit assumption here is the ran-
domness of the distribution of regions, since it has yet to be
understood how and if these inhomogeneities are distributed
throughout the bulk material.

For understanding the optical response of the entire sys-
tem, we now summarize the idea of the EMA. An electro-
magnetic wave, of frequency �, moving through a composite
material will undergo multiple scattering and absorption
events. In a bulk material these events are accounted for as
an average by means of an effective complex dielectric func-
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FIG. 1. �Color online� �a� STM gap map of surface of over-
doped �OD� BSCCO with Tc=89 K from Refs. 2 and 6. �b� Sche-
matic of system comprised of spherical particles distributed at ran-
dom as dictated by histogram �d�. �c� Histogram of gap distribution
shown in �a� adapted from Ref. 2. �d� Rebinning of histogram �c� to
a set of five gaps.
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FIG. 2. �Color online� Adapted from Ref. 2. Plot of supercon-
ducting gap value as a function of position along a straight line of
an STM gap map.
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tion �m���. If the bulk material is a composite, it is assumed
to be composed of a number of regions of uniform dielectric
functions �i���. The scattering caused by these regions is
dependent upon both the shape and size of the regions
�grains�. These scattering events can be taken into account by
allowing each grain to become polarized, producing its own
additional field. When we extend this to a macroscopic sys-
tem, we add the constraint that the entire material should
have a zero net polarization, i.e.,20

�
i

f iPi = 0, �1�

where f i is the relative fraction of the occurrence of a certain
type of grain indexed by i and Pi is that constituent’s polar-
ization. Knowing this, we can solve for the real and imagi-
nary parts of �m��� in the following equation:

�
i

f i
��i − �m�

g�i + �1 − g��m
= 0, �2�

where g is the depolarization factor, determined by the shape
of the constituent grain.16,17 The form of the polarization in
Eq. �2� can be seen as the electric dipole contribution of a
multipole expansion. Subsequent terms in the polarization
�magnetic dipole, electric quadrupole, etc.� scale as functions
of the grain size. In the spherical case these terms scale as
��Ri /c�2= �Ri /��2, where Ri is the radius of the individual
grains and � is the wavelength of the field. For this case, the
correction to Eq. �2� to next order would be

�
i

f i� ��i − �m�
�i + 2�m

+
1

30
��Ri

c
�2

��i − �m�� = 0. �3�

We can see certain limits where the second term can be ne-
glected. In the small grain limit, we would expect the far-
infrared �long wavelength limit� response to be completely
dominated by the first term. As this is the region of interest
for detecting signatures of the superconducting energy gap,
the EMA as in Eq. �2�, with g set to a value of 1/3 �spherical
grains�, is appropriate for our purpose. Note that we do not
find any qualitative differences in the calculations reported
here for other typical values of g.

To implement the above EMA, we require the frequency
dependent complex conductivity 	���=	1���+ i	2��� as the
dielectric function can be written as ����=�


+ i	4�	��� /�
, where �
 is the high frequency dielectric
constant. The constituent conductivities that we use for our
purpose here are calculated according to Zimmermann et
al.26 for the case of BCS s-wave superconductors with vari-
able impurity scattering and according to Schürrer et al.27 for
the BCS d-wave case. In this paper, we consider only an
elastic scattering rate in the optical conductivity and have not
included inelastic scattering, as might arise due to electron-
boson interactions, such as phonons and spin fluctuations.
For a system of N different types of superconducting grains,
the EMA of Eq. �2� can be expanded to the form of an Nth

order complex polynomial in �m��� or by setting �k=1
+ i�4�	k /�� �k=1,2 , . . . ,N and m� as a complex polynomial
in 	m. For example, in � we now have

�m
N��� + a1�m

N−1��� + ¯ + aN�m
0 ��� = 0, �4�

where the coefficients ai vary based on the choice of N. For
an N=2 system, one can solve directly for �m by substituting
in its complex form, �m=�1m+ i�2m, and solving for the real
and imaginary parts separately. Analytically, this becomes
largely unfeasible for N�2. For this reason, considerations
of composites, with a large number of constituents, N, have
not been thoroughly explored. Numerical solutions, however,
are much more feasible. All that is required is solving for the
set of ai’s for each choice of N. This turns out to be a difficult
task for N�3 and it is preferable to use a program to solve
this algebraically. For example, for the N=2 case,

a1 =
1

b0
	− f1�1����1 − g� + f1g�2��� − f2�2����1 − g�

+ f2g�1���
 , �5�

a2 =
1

b0
	− f1�1���g�2��� − f2�2���g�1���
 , �6�

where b0=1−g. We can see that these coefficients depend on
the dielectric function �i��� �or conductivity� of each con-
stituent, as well as their relative volume fractions f i and the
depolarization factor, g. These are the key pieces of informa-
tion required to perform such an effective-medium calcula-
tion, and as such, will be explained in detail for each case we
wish to examine. Knowing the numerical coefficients, ai in
Eq. �4�, reduces the EMA calculation to the problem of nu-
merically solving an Nth order complex polynomial. Such a
polynomial has N solutions, of which only one is generally
completely physical as �2��� must be strictly positive for
each choice of �.

III. d-WAVE ENERGY GAP INHOMOGENEITIES

In order to determine possible signatures in the bulk due
to the inhomogeneities seen by STM, we created a mixture
of superconducting patches which is motivated by Fig. 1�a�
and shown schematically in Fig. 1�b�. We tried to maintain
the same gap distribution seen in experiment and shown in
the histogram of Fig. 1�c�, but have rebinned the distribution
so that it gives only five fractions f i in order to reduce the
complexity of the numerical calculation. This is shown in
Fig. 1�d�. Furthermore, we assumed that each constituent has
d-wave gap symmetry similar to what one would expect in
the bulk BSCCO conductivity28 and have used the BCS
d-wave conductivity program of Ref. 27 to provide the input
conductivities to the EMA. The BCS conductivity, while
missing the inelastic component, does exhibit similar quali-
tative features as seen in experimental results, and can be
applied with a minimal number of parameters: the energy
gap �, the plasma frequency �p, the temperature T, and the
scattering parameter t+=1 / �2�
�, where 1 /
 is the elastic
scattering rate. Since we are interested in the effects of vary-
ing only the gap parameter and we wish to limit the param-
eter space, we compute the EMA using constituents with
similar plasma frequencies and scattering rates, but a range
of � values. The real part of the input conductivities of the

SIGNATURES OF SUPERCONDUCTING GAP… PHYSICAL REVIEW B 78, 094513 �2008�

094513-3



constituent superconducting grains is shown in Fig. 3. These
curves were calculated with realistic parameters, as given in
Ref. 27, i.e., �p=2 eV, t+=0.2 meV, at T=20 K.

The overall characteristics of the resulting EMA in this
case �shown in Fig. 4� remain what would be expected of a
single-gap d-wave superconductor with scattering in the
clean limit. Indeed, if we superimpose the conductivity curve
for the average gap value, which dominates the gap distribu-
tion seen in STM, we find that there is not much difference
between the two curves and therefore we conclude from

these calculations that even if the inhomogeneity persists
throughout the bulk, the size of variation in the gap, on
scales seen in STM, cause very little variation in the overall
conductivity of the sample from that of a single-gap system,
and therefore it would be difficult to determine the presence
of inhomogeneities from bulk far-infrared optical measure-
ments. Because these superconductors are believed to be in
the clean limit the effective variation in superfluid density
included in these curves are small. This is very different from
the model of Barabash and Stroud23 where they have found
large changes in absorption in the microwave and terahertz
region in a model with comparatively very large variation in
superfluid density. Likewise, in this region other theoretical
works have found mechanisms for inducing large absorption
due to inhomogeneity via Josephson coupled grains29 �not
included in our work� or quenched disorder incorporating
normal state regions and favoring anticorrelation between the
superconducting and normal state inhomogeneity for maxi-
mum effect.30,31 If we add normal regions to our calculation
then enhanced absorption will indeed occur at very low fre-
quency and this has been known for some time for two-grain
mixtures of normal regions and regions of s-wave supercon-
ductor. We stress that our work is about imprints of the in-
homogeneities on the infrared region and not the terahertz
region where, in the latter case, large effects have been seen
in experiment over a range of doping.32 Furthermore, we are
taking as input the distribution of gaps suggested by the ob-
servation of STM, which are taken to be static. The motiva-
tion and the questions that we have asked are different from
these other works and we are focused on the region of the
energy gap where one might expect to see the effects due to
the gap distributions seen in STM.

Further to our discussion of our results in Fig. 4, we note
that variation in scattering rates of constituent grains �of up
to a factor of 10� does not change the qualitative results of an
EMA mixture with d-wave symmetry. We do not expect to
have large values of the scattering rate, as this would quench
the superconducting state, and there is no evidence from
STM or otherwise for normal regions mixed in among the
regions of inhomogeneous superconductivity at low tempera-
tures. We conclude that the narrow range of gap values seen
in STM coupled with the rather smooth nature of the con-
ductivity for a BCS d-wave superconductor makes the obser-
vation of possible gap inhomogeneities uncertain through
far-infrared optics. Adding in realistic inelastic scattering
would not change this conclusion as this type of scattering
will not introduce new sharp features in the conductivity. As
a final point, most approaches to calculating optical proper-
ties of the cuprates assume a homogeneous model. Our re-
sults indicate that it is appropriate to compare results of such
calculations for the average gap with experiment, and that
ignoring inhomogeneities is a valid first approximation.

IV. s-WAVE ENERGY GAP INHOMOGENEITIES

With the knowledge of Sec. III, we are now motivated to
find possible systems where gap inhomogeneities could have
a clear signature in optics and indeed, it is clear that a system
with a conductivity curve which contains sharp features
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would be an ideal candidate. Consequently, we now examine
the effect of a distribution of gaps on a conventional s-wave
BCS superconductor. We begin by calculating the zero tem-
perature BCS s-wave conductivities for two simple distribu-
tions of gap values shown in Figs. 5�b� and 5�c�. We have
assumed a constant elastic scattering rate 1 /
=50 meV, and
plasma frequency �p=2 eV for all grains and this puts the
system in the regime where 2��1 /
, which is a mildly dirty
limit. We calculate this EMA mixture under the assumption
that each constituent maintains the same overall transition
temperature, therefore, variations in � value can be seen as
analogous to changing the 2�

Tc
ratio from 3.53→7.53 in steps

of 1. Curves for the real part of the conductivity, used for
input to the EMA, are shown in Fig. 5�a�.

In the two-grain composite, Fig. 6 �left column�, we ob-
serve that the separation of gap onsets is sufficient to clearly
display a two-gap result in the real part of the conductivity,
	1 �top frame�. The real part of the conductivity rises sharply
out of zero as it does in all of the curves in Fig. 5�a�. This is
followed by a first peak, after which a second rise begins at
twice the value of the largest gap in our two-gap distribution.
A second peak follows at higher energy before the normal
state Drude form is recovered. This is fundamentally differ-
ent from, and should not be confused with, a two-band su-

perconductor such as MgB2.33 It should be noted that the
EMA is distinct in this two-gap system from a fractional
average of its constituents since both 	1m and 	2m depend on
both the real and imaginary parts of the constituents. In other
words, for a two component mixture labeled a and b, where
	a=	1a+ i	2a and 	b=	1b+ i	2b, the EMA results in 	1m
=	1m�	1a ,	2a ,	1b ,	2b� and 	2m=	2m�	1a ,	2a ,	1b ,	2b�.
This additional dependence of the real part of the conductiv-
ity on the imaginary parts of its constituents in general leads
to an increased low frequency contribution to 	1m from the
imaginary conductivities �physically seen as scattering from
constituents�. The imaginary part multiplied by �, namely,
�	2���, is shown in the lower left panel. As the frequency
goes to zero, we find the inverse square of the London pen-
etration depth for the composite system. At finite frequency,
there are structures in �	2��� corresponding to the frequen-
cies of the onset of absorption of each of the two grains
included in the model. These structures would be easily iden-
tifiable.

When we consider a less-separated five-grain distribution
	seen in Fig. 5�c�, with results in Fig. 6 �right column�
, we
immediately recognize the loss of clear onset points for each
gap value and instead see a broadened rise in 	1��� �Fig. 6,
top right frame�, which quickly rejoins an average gap fit at
frequencies just above the highest 2� point. Shown here is
the EMA calculation as the solid black curve with the dashed
red curve being the calculation for a single-gap system using
the average gap of the distribution as the input gap. It is clear
that in this more realistic case the signature of inhomogene-
ities is not as readily identifiable as for the two-gap case.
This is also true for the imaginary part, �	2���, shown in the
lower frame; now a single minimum is seen similar to the
single-gap case, but somewhat more broadened.

The real and imaginary parts of the conductivity are not
the only optical quantities that enter a more modern discus-
sion of the subject. In fact, it has been found to be very
useful to introduce an optical self-energy �op��� defined in
terms of the generalized Drude formula for the optical con-
ductivity, 	���, which is written as34–36
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	��� = ı
�p

2

4�

1

� − 2�op���
. �7�

Here �p is the plasma frequency and �op��� has both a real
and imaginary part related, respectively, to a frequency de-
pendent optical effective mass, mop

� ��� /m, �where m is the
bare electron mass� and scattering rate, 1 /
op���, given by

��mop
� ���
m

− 1� = − 2�1
op��� �8�

and

1


op���
= − 2�2

op��� . �9�

An optical mass renormalization parameter, �op���, is then
defined by mop

� ��� /m=1+�op���. These quantities are analo-
gous, but different from, the quasiparticle mass renormaliza-
tion and scattering rate which follow from the quasiparticle
self-energy �qp���. Instead, �op��� is a two-particle
quantity.37 It is related to the Kubo formula for the current-
current correlation function which determines 	���.

In general, as stated, the optical and quasiparticle mass
renormalization and scattering rate are not the same, al-
though in some limits they can be. As an example, the zero-
frequency mass renormalization �op��=0� and �qp are equal.
In the end, of course, �op��� contains exactly the same in-
formation as does 	���. In fact, one can solve for 1 /
op and
�op in terms of 	1 and 	2 to find34,35

1


op
=

�p
2

4�

	1���
	1

2��� + 	2
2���

�10�

and

1 + �op =
�p

2

4��

	2���
	1

2��� + 	2
2���

. �11�

This does not mean, however, that these quantities have no
particular value of their own. It is well documented that they
can speak more directly to certain questions than can 	 itself.
For example, 1 /
op��� provides information on absorption
and, in an s-wave superconductor, at zero temperature it is
zero for photon energies, �, less than twice the gap. A co-
herence peak is seen above this energy and at high � we
recover a measure of the normal state elastic scattering. Fur-
ther, it has recently been found that in the underdoped cu-
prates, the real part of �op��� possesses a “hatlike” structure
which extends in energy over a range of about twice the
pseudogap energy. This characteristic structure, which is su-
perimposed on a large smooth incoherent background, is
nevertheless unmistakable and provides a direct image of
pseudogap formation38 as it enters the in-plane optical data.
By contrast, the effect of the opening of a pseudogap in the
real and imaginary part of the conductivity is much more
subtle and is spread over a much larger energy range. Thus,
the optical quantities defined in Eqs. �10� and �11� have
proved useful and here we will consider how they are
changed in the case of a distribution of regions of distinct
gap values.

In the top row of Fig. 7 we show results for 1 /
op���
�solid black curve� in meV as a function of � �also in meV�
for the two- and five-gap distributions of Figs. 5�b� and 5�c�.
The onset of absorption starts at the lowest value of twice the
gap which is roughly 11 meV in our model. Also shown for
comparison �dashed red curve� are results for the case of a
homogeneous superconductor with the same average gap
value. We see that, by comparison, the rise in 1 /
op��� in the
inhomogeneous case, is not as steep and proceeds more
gradually, being spread out over an energy scale which cor-
responds to the spread in gap values in our model distribu-
tion. The peak in the red dashed curve has its origin in the
well-known coherence peak of the BCS s-wave electronic
density of states. In the normal state, 1 /
op��� would be
independent of � and equal to the input constant impurity
scattering rate of 50 meV in this example. This is the value to
which 1 /
op��� �superconducting� tends toward for � greater
than a few times the gap. In the superconducting state, how-
ever, no absorption is possible below twice the gap, at which
energy 1 /
op��� rises sharply and overshoots its normal state
value, not because the intrinsic scattering potential has in-
creased but rather because there are more final states avail-
able for absorption. For the inhomogeneous case this feature
is simply smeared out somewhat because of the distribution
of different superconducting regions which are sampled.

In the lower row of Fig. 7 we show our results for the
optical mass enhancement parameter 	1+�op���
 in the two-
and five-gap cases. The solid black curve is for the inhomo-
geneous case and the red dashed curve is the homogeneous
case with an averaged gap value for comparison. We note the
inhomogeneities smear out the peak in �op��� around 2�.
However, in all other aspects the curves are similar. We em-
phasize two points. First, for � large compared with the gap,
the mass renormalization factor �op��� tends toward zero,
which agrees with its normal state value. At �=0, however,
�op is seen to be quite large ��2.5� in both the homogeneous
and inhomogeneous cases. In this limit, the optical effective
mass has a very definite meaning. It is the value of the elec-
tron mass that one is to give the electrons if one wishes to
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use the classical London formula for the penetration depth �L
at T=0, namely �L

−2=4�ne2 /m�c2 where n is the free elec-
tron density, e is the electron charge and c is the velocity of
light. In the clean limit; i.e., no elastic scattering, m� would
be the bare electron mass. Including impurities in BCS
theory reduces the London penetration depth and this can be
expressed by changing m to m���=0� in the conventional
expression. Our results show that this result is only slightly
changed in the inhomogeneous case; i.e., m���=0� is only
very slightly larger. The main effect of inhomogeneities
manifests itself at finite frequency in the region of twice the
gap. We see that, as compared with the dashed red curve, the
solid black curve shows a much broader peak which is a
direct consequence of spatial gap variations. The peak in
�op��� around twice the gap is directly tied to the rapid rise
in 1 /
op��� at this same frequency, as these are Kramers-
Kronig �KK� related; i.e., a step in the scattering rate at �
=2� translates into a logarithmic singularity at 2� in its KK
transform. We note in passing that a recent optical study of
MoGe �Ref. 39� has revealed such a smearing of coherence
peaks in the thinnest films studied, which could be attributed
to inhomogeneities, however, other evidence suggests other-
wise. Likewise, a recent optical study on CaC6 found that a
fit to a distribution of gaps done as an averaging of s-wave
conductivity curves was necessary to fit the measured reflec-
tance spectra;40 however, this distribution is predicted from
density-functional calculations and therefore should not be
associated with inhomogeneities. It remains to be seen if
there will be an example from s-wave superconductivity for
testing for inhomogeneities as we have seen for the d-wave
cuprate superconductors. Recent new techniques of imaging
the surface of materials optically to see the inhomogeneous
evolution of regions of metallic or insulating response41 may
prove to be a promising venue for these studies if the tech-
nique can be successfully developed for low enough tem-
peratures to access the superconducting state.

We have shown our result for the d-wave conductivity in
the clean limit and the s-wave case in the dirty limit as these
are the regimes in which one finds these systems experimen-
tally. However, in Fig. 8 for comparison, we show the five-
grain gap distribution in an EMA for an s-wave supercon-
ductor in the clean limit where 1 /
=1 meV. In this case,
one sees considerable structure in the EMA conductivity,
even compared to the dirty limit s-wave case. This serves to
illustrate two points. First, the d-wave case is different from
the s-wave case in this limit. Second, this figure stresses once
again that the presence of sharp features in the individual
conductivities of the grains will give rise to signatures of
inhomogeneities in the bulk conductivity curve. In the clean
limit, the s-wave conductivity has a steeper rise and a peak at
2� as opposed to the dirty limit, and hence the presence of
structure appears in the EMA in this case.

V. SUMMARY AND CONCLUSIONS

Optical absorption is a probe of bulk properties. Using
effective-medium theory, we have calculated the far-infrared
optical conductivity of a superconductor consisting of a

random array of nanoscale regions having different magni-
tudes of superconducting gap. The superconductivity in each
grain is described within a BCS model, and both s- and
d-wave symmetry are considered. For simplicity, models
consisting of two and five distinct gap values are examined
in detail. For an s-wave superconductor, the real part of the
optical conductivity is zero for frequencies below twice the
gap, with the missing optical spectral weight transferred to
the condensate. For d-wave, the region below 2� is also
depleted, although some absorption remains at all frequen-
cies and there is no sharp threshold in 	1��� vs �. In this
latter circumstance the infrared conductivity of the compos-
ite system does not exhibit qualitatively different behavior as
compared with the single grain which would represent a
clear signature of the bulk inhomogeneities. In fact, there are
no quantitative differences between 	��� of the composite
and the individual grains, and the electromagnetic response
appears close to that for the average gap. By contrast, for an
s-wave gap, the sharp absorption edge in 	1��� at twice the
gap which is characteristic of a uniform BCS superconductor
becomes less steep reflecting the onset of a distribution of
gaps rather than of a single one. For a distribution involving
only two well-separated gap values, each is seen distinctly in
both the real and imaginary parts of the conductivity as well
as in the real and imaginary parts of the corresponding opti-
cal self-energy. This latter property follows directly from
knowledge of the conductivity and has been found useful in
past discussions of, for example, boson structures in optical
properties. For the case of a distribution of many gap values,
the presence of each individual gap is less evident with
	1��� showing rather gradual onset over a frequency range
representative of the variation in gap values. In conclusion,
signatures of nanoscale spatial inhomogeneities in the far-

0 10 20 30 40
ω (meV)

0

500

1000

1500

σ 1(ω
)

(m
eV

)

0

1000

2000

3000

σ 1(ω
)

(m
eV

)

FIG. 8. �Color online� EMA result for an s-wave superconductor
in the clean limit with a five-grain composite using the same distri-
bution of gaps as given in Fig. 5 but for 1 /
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frame shows the input conductivities with the same line labeling as
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infrared optical conductivity are much more readily recog-
nized for composites consisting of s-wave gap symmetry
components than they are for those with d-wave gap symme-
try. Indeed, the fact that the d-wave case appears to be
largely unaffected by the existence of inhomogeneities in
spite of their apparent presence in STM gives support for the
continued use of single-gap models for calculation and
analysis of optical conductivity of the high-Tc cuprates in the
far-infrared, which covers the energy region of the supercon-
ducting energy gap.
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